Grade 91 steel has been widely utilized in power plants over the last 20 years. Its specification worldwide has dramatically increased since the acceptance of Code Case 1943 for this material in 1983. Recent evaluation of a combination of ex-service Grade 91 steel components and virgin material has provided a unique opportunity to independently assess the performance of a combination of base metal and weldments. This approach has been grounded in the fundamental objective of linking metallurgical risk factors in Grade 91 steel to the cross-weld creep performance. Establishing critical risk factors in 9Cr steels is regarded as a key consideration in the integration of a meaningful life management strategy for these complex steels. The potential metallurgical risk factors in Grade 91 steel have been fundamentally divided into factors which affect strength, ductility or both. In this study, two heats of ex-service Grade 91 steel which exhibit dramatic differences in strength and ductility have been evaluated in the ex-service condition and re-heat treated to establish a relevant set of strength:ductility variables. This set of variables includes [strength:ductility]: low:low, medium:low, low:high and medium:high. The influence of these strength:ductility variables were investigated for feature type cross-weld creep tests to better evaluate the influence of the initial base material condition on cross-weld creep performance.

This content is only available as a PDF.