Abstract
23Cr-45Ni-7W alloy (HR6W) is a material being considered for use in the high temperature parts of A-USC boilers in Japan. In order to establish an assessment method of creep damage for welded components made using HR6W, two types of internal pressure creep tests were conducted. One is for straight tubes including the circumferential weld and the other is for welded branch connections. The test results for the circumferential welds ensured that the creep rupture location within the area of the base metal, as well as the time of rupture, can be assessed by mean diameter hoop stress. On the other hand, the creep rupture area was observed in the weld metal of the branch connections, although the creep strength of Inconel filler metal 617 was higher than that of HR6W. FE analyses were conducted using individual creep strain rates of the base metal, the heat affected zone and the weld metal to clarify this difference in the failures of these two specimens. Significant stress was only produced in the weld metal as opposed to the base metal, due to the difference in creep strain rates between the welded branch connections and creep crack were initiated in the weld metal. The differences between the two failure types were assessed using the ductility exhaustion method.