Abstract
There is a constant need for improved knowledge of the influence of non-standard processing on the expected performance of creep strength enhanced ferritic (CSEF) materials as the total installed tonnage of these materials is rapidly increasing across the power generation industry. Cr-Mo-V steel grades micro-alloyed with niobium and titanium designed for pressurized equipment operating in the supercritical steam range proved to be very sensitive to relative minor variations in the principal heat treatment parameters time and temperature, when compared to the traditional Cr-Mo-V grades. A key component for successful welds is optimised post weld heat treatment (PWHT). Under certain conditions premature failures of welds can occur when incorrect weld and heat treatment performance result in a reduction of specified mechanical properties and high temperature creep performance, it is therefore of significant importance to have a good understanding of actual material properties for effective operation and plant life studies. This study investigated the effect and impact variations of post weld heat treatment time and temperature on mechanical properties of tungsten inert gas (TIG) and manual metal arc (MMA) welds on Grade 91 pipes from a set of reference samples. This is in preparation of establishing a benchmark set of tests to determine the integrity and expected long-term performance of butt-welds from limited site sample volumes, providing a non-intrusive methodology to identify welds suspected to have received non-standard PWHT cycles on Grade 91 pipework systems.