Abstract
Steam oxidation of a novel austenitic steel, of which composition is Fe-20Cr-30Ni-2Nb (at.%), has been conducted at 973 K to evaluate steam oxidation resistance based on detail analyses of scale morphology and scale growth. Two types of scale morphologies were observed in the solution treated sample, depending on the grain of the steel. Although thin duplex scale with the Cr-rich layer was formed in the early stage, most of the surface was covered with thick duplex scale which consists of magnetite as the outer scale and the mixture of Fe-Cr spinel and metallic Ni as the inner scale. On the other hand, surface morphology of the oxide scale was independent of grain of the steel and thick duplex scale as seen on the solution treated sample was formed on the pre-aged sample. Steam oxidation resistance of the steel is almost the same as that of commercial austenitic steels and it can be improved by the surface treatment such as shot peening. Based on the results, this steel has both enough creep rupture strength and good steam oxidation resistance for A-USC power plants.