Abstract
To improve the efficiency of fossil fuel power plants the operating temperatures and pressures need to be increased. However, at high temperatures the steam side oxidation resistance becomes a critical issue for the steels used especially at the final stages of superheaters and reheaters. Apart from the chemical composition of the material, surface condition is a major factor affecting the oxidation resistance in steam and supercritical water. In this paper, stainless boiler steels (UNS S34710, S31035, S31042, and S30942) are investigated for oxidation resistance in flowing supercritical water. Tests were conducted in an autoclave environment (250 bar, with 125 ppb dissolved oxygen and a pH of 7) at 625°C, 650°C and 675°C for up to 1000 h. Materials were tested with as-delivered, shot peened, milled or spark eroded and ground surface finish. The results show a strong influence of surface finish at the early stages of oxidation. Oxides formed on cold worked surfaces were more adherent and much thinner than on a spark eroded and ground surface. This effect was stronger than the influence of temperature or alloy composition within the tested ranges.