Laboratory-scale tests are frequently used to generate understanding of high-temperature oxidation phenomena, to characterise and rank the performance of existing, future materials and coatings. Tests within the laboratory have the advantage of being well controlled, monitored and offer the opportunity of simplification which enables the study of individual parameters through isolating them from other factors, such as temperature transients. The influence of pressure on the oxidation of power plant materials has always been considered to be less significant than the effects of temperature and Cr content, but still remains a subject of differing opinions. Experimental efforts, reported in the literature, to measure the influence of steam pressure on the rate of oxidation have not produced very consistent or conclusive results. To examine this further a series of high pressure steam oxidation exposures have been conducted in a high pressure flowing steam loop, exposing a range of materials to flowing steam at 650 and 700 °C and pressure of 25, 50 and 60 bar. Data is presented for ferritic-martensitic alloys showing the effect of increasing pressure on the mass change and oxide thickness of these alloys in the flowing steam loop. In addition the effect observed on the diffusion of aluminium from an aluminised coating in these alloys is also presented and the differences in the extent of diffusion discussed.

This content is only available as a PDF.