Advanced Ultra-Super-Critical (A-USC) technology is one of the remarkable technologies being developed to reduce CO2 emissions. The 700°C class A-USC steam turbine project was launched in 2008 to contribute to substantial reductions in CO2 emissions and major Japanese manufacturers of boilers and turbines joined forces with research institutes to bring the project to reality. The use of Ni-base alloys is necessary for high temperature component of 700°C class AUSC steam turbine, and which is required increasing in size of Ni-base casting alloys to apply inner casing, valve body, nozzle block and so on. Therefore, trial production and verification test of Step block (weight: 1.7 ton) with actual component thickness 100-300mm were firstly performed to investigate basic casting material properties in this study. As candidate alloy, alloy 617 was chosen from a commercially available Ni-base alloy, from the viewpoint of large component castability and balance of mechanical properties stability at 700°C use. Microstructure test, high temperature mechanical test and long-term heating test of each thickness part specimen were carried out and good creep rupture strength was obtained. Next, the nozzle block of alloy 617 was manufactured for the trial casting of the actual machine mock-up component with complex shape (weight: 1.2 ton). For a comparison, alloy 625 was cast at the same time. Both castings of alloy 617 and alloy 625 were able to manufacture without a remarkable defect. Detailed comparisons to microstructures and mechanical properties are included in this paper.

This content is only available as a PDF.