The Creep Strength Enhanced Ferritic steel grade 91 is widely used for both retrofit applications and primary construction on high temperature power plant. Although to date most structural integrity issues with this material have been associated with welds, as the operating hours of these plants accumulate, there will be a growing need for remanent creep life assessment of the base material. Arguably this is already the case for aberrant grade 91 material entering service in an incorrectly heat treated condition. In these circumstances the strength may fall below the normally accepted lower bound of the creep strength range and some indication of actual strength may be required. One strategy to address potential base material failure is to use small scale sampling of individual components, followed by small scale creep testing, to investigate the current creep strength present. The data can be compared with the equivalent data produced for well characterised material known to be at the lower bound of the creep strength range. This paper describes a methodology for using the impression creep data obtained to provide both creep strength ranking and an estimate of absolute creep strength for individual grade 91 components. This will enable appropriate judgements to be made by plant operators on repair/run decisions. For those components remaining in service, it allows for the weakest items to be given priority for early re-inspection at future outages. The ultimate goal is to identify base material creep damage development at as early a stage as possible and well in advance of failure in service.

This content is only available as a PDF.