Abstract
Advanced chromium-molybdenum-vanadium steels 9CrMoV [P(T)91] have seen extensive global adoption across power, petrochemical, and other industrial sectors over the past decade, driven by the demand for materials with superior high-temperature properties to improve efficiency. Experience with P(T)91 base metals and weldments has revealed that these steels require substantially more attention than the commonly used P(T)22 grade and similar materials. This presentation examines Grade 91's various design code requirements across power, petroleum, and nuclear industries, focusing on fabrication and welding considerations. The discussion covers critical material properties and heat treatment parameters, including the significance of maintaining proper preheat and interpass temperatures, while highlighting the risks associated with interrupted heating cycles and improper postweld heat treatment. The paper also addresses factors influencing the use, development, and procurement of Modified Grade 91 welding consumables for heavy wall applications, and explores the subtle technical differences between North American and European approaches to production and utilization, ultimately emphasizing the considerable care required during joining processes to ensure acceptable long-term properties.