Abstract
This paper outlines a comprehensive UK-based research project (2007-2010) focused on developing fireside corrosion models for heat exchangers in ultra-supercritical plants. The study evaluates both conventional materials like T22 and advanced materials such as Super 304H, examining their behavior under various test environments with metal skin temperatures ranging from 425°C to 680°C. The research aims to generate high-quality data on corrosion behavior for materials used in both furnace and convection sections, ultimately producing reliable corrosion prediction models for boiler tube materials operating under demanding conditions. The project addresses some limitations of existing models for these new service conditions and provides a brief review of the fuels and test environments used in the program. Although modeling is still limited, preliminary results have been presented, focusing on predicting fireside corrosion rates for furnace walls, superheaters, and reheaters under various service environments. These environments include those created by oxyfuel operation, coal-biomass co-firing, and more traditional coal firing.