Abstract
In the late 1980s, the domestic utility industry experienced failures in dissimilar metal welds (DMWs) between low-alloy ferritic tubing and austenitic tubing in superheaters and reheaters. Extensive research by EPRI identified that nickel-based filler metals significantly improved service life compared to 309 SS filler metals. Additionally, optimized joint geometries and increased weld metal reinforcement were found to further enhance durability. A new nickel-based filler metal was developed with thermal expansion properties similar to the low-alloy base metal, along with a low chromium content designed to minimize the carbon-denuded zone. However, this filler metal was never commercialized due to its tendency to microfissure, which resulted in a shorter-than-expected service life. This paper explores further investigations into the microfissuring of this filler metal and examines long-term testing to assess its suitability for high-temperature applications.