Abstract
Competitive pressures throughout the power generation market are forcing individual power plants to extend time between scheduled outages, and absolutely avoid costly forced outages. Coal fired power plant owners expect their engineering and maintenance teams to identify, predict and solve potential outage causing equipment failures and use the newest advanced technologies to resolve and evade these situations. In coal fired power plants, erosion not only leads to eventual failure, but during the life cycle of a component, affects the performance and efficiency due to the loss of engineered geometry. “Wear” is used very generally to describe a component wearing out; however, there are numerous “modes of wear.” Abrasion, erosion, and corrosion are a few of the instigators of critical component wear, loss of geometry, and eventual failure in coal fired plants. Identification of the wear derivation is critical to selecting the proper material to avoid costly down-times and extend outage to outage goals. This paper will focus on the proper selection of erosion resistant materials in the severe environment of a coal fired power plant by qualifying lab results with actual field experiences.