Abstract
This study examined a three-way steam pipe made from low-alloy cast Cr-Mo-V steel after more than 100,000 hours of creep service. The investigation compared the microstructure and mechanical properties at both room and elevated temperatures to the material's initial state, including impact transition temperatures. The research utilized shortened creep tests under various conditions of stress and temperature, along with extensive investigations of both low-alloy Cr-Mo-V and high-alloyed 12Cr-Mo-V steels, to develop methods for estimating service life and residual life in practical applications. The findings enabled the development of parameter selection methods for long-term creep tests and helped determine the residual life of the low-alloy Cr-Mo-V cast steel. Additional low-cycle isothermal and thermal fatigue tests were conducted to assess the overall degree of material property degradation, with results being applicable to the diagnostics of pressure installations in power stations.