Abstract
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are sponsoring the “Boiler Materials for Ultrasupercritical Coal Power Plants” program. This program is aimed at identifying, evaluating, and qualifying the materials needed for the construction of critical components for coal-fired boilers capable of operating at much higher efficiencies than the current generation of supercritical plants. Operation at ultrasupercritical (USC) conditions (steam temperatures up to 760°C (1400°F)) will necessitate the use of new advanced ferritic materials, austenitic stainless steels and nickel-based alloys. As well as possessing the required mechanical properties and fireside corrosion resistance, these materials must also exhibit acceptable steamside oxidation resistance. As part of the DOE/OCDO program, steamside oxidation testing is being performed at the Babcock & Wilcox Research Center. More than thirty ferritic, austenitic and nickel-based materials have been exposed for up to 4,000 hours in flowing steam at temperatures between 650°C (1202°F) and 800°C (1472°F). In addition to wrought materials, steamside oxidation tests have been conducted on weld metals, coated materials and materials given special surface treatments. Exposed specimens were evaluated to determine oxidation kinetics and oxide morphology. High chromium ferritic, austenitic and nickel-based alloys displayed very good oxidation behavior over the entire temperature range due to the formation of a dense chromium oxide. With increasing steam temperature, low chromium ferritic materials experienced breakaway oxidation, and low chromium austenitic materials experienced significant oxide exfoliation. Special surface treatments that were applied to these materials appeared to have a beneficial effect on their oxidation behavior.