Erosion from solid and liquid particles in gas turbine and steam turbine compressors degrades efficiency, increasing downtime and operating costs. Conventional erosion-resistant coatings have temperature and durability limitations. Under an Electric Power Research Institute (EPRI) project, ultra-hard nano-coatings (~40 microns thick) were developed using Plasma Enhanced Magnetron Sputtering (PEMS). In Phase I, various coatings—including TiSiCN nanocomposites, stellite variants, TiN monolayers, and multi-layered Ti-TiN and Ti-TiSiCN—were deposited on turbine alloys (Ti-6Al-4V, 17-4 PH, Custom-450, and Type 403 stainless steel) for screening. Unlike conventional deposition methods (APS, LPPS, CVD, PVD), PEMS employs high-current-density plasma and heavy ion bombardment for superior adhesion and microstructure density. A novel approach using trimethylsilane gas successfully produced TiSiCN nanocomposites. Stellite coatings showed no erosion improvement and were discontinued, but other hard coatings demonstrated exceptional erosion resistance—up to 25 times better than uncoated substrates and 20 times better than traditional nitride coatings. This paper details the deposition process, coating properties, adhesion tests, and characterization via SEM-EDS, XRD, nanoindentation, and sand erosion tests.

This content is only available as a PDF.