Driven mainly by the environmental and economic concerns, there is an urgent need for increasing the thermal efficiency of fossil fuel power generation plants, which still languishes at around 32% under current practices. Several programs have been undertaken worldwide to address this issue. One of the immediate options is to increase the steam temperature and pressure (to the supercritical range). However, the current power plant materials appear to have inadequate creep resistance under these demanding conditions along with corrosion/oxidation problems. Hence, to meet these challenges a variety of new steels and stainless steels have been developed in the United States, Japan, and Europe. Alloy design and microstructural design approaches in developing these alloys (ferritic/martensitic, austenitic and oxide-dispersion- strengthened steels) will be briefly reviewed. Further, this paper presents creep data of these steels found in the literature in terms of Larson-Miller parameters (LMP). A detailed account of plausible creep micromechanisms in these advanced steels is also be summarized.

This content is only available as a PDF.