Abstract
The creep resistance of 9-12% Cr steels is significantly influenced by the presence and stability of different precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service. Based on the software package MatCalc, the evolution of these precipitates during the thermal treatment of the COST 522 steel CB8 is simulated from the cooling process after cast solidification to heat treatment and service up to the aspired service life time of 100.000h. On basis of the results obtained from these simulations in combination with a newly implemented model for evaluation of the maximum threshold stress by particle strengthening, the strengthening effect of each individual precipitate phase, as well as the combined effect of all phases is evaluated - a quantification of the influence of Z-Phase formation on the long-term creep behaviour is thus made possible. This opens a wide field of application for alloy development and leads to a better understanding of the evolution of microstructural components as well as the mechanical properties of these complex alloys.