SUPER304H (18Cr-9Ni-3Cu-Nb-N, ASME CC2328) and TP347HFG (18Cr-12Ni-Nb, ASME SA213) are advanced fine-grained microstructure steel tubes developed for high strength and superior steam oxidation resistance. Their exceptional performance is demonstrated by the longest creep rupture tests, with SUPER304H tested at 600°C for 85,426 hours and TP347HFG at 700°C for 55,858 hours, both maintaining stable strength and microstructure with minimal σ phase formation and absence of other brittle phases compared to conventional austenitic stainless steels. HR3C (25Cr-20Ni-Nb-N, ASME CC2115) was specifically developed for high-strength, high-corrosion-resistant steel tubes used in severe corrosion environments of ultra-supercritical (USC) boilers operating at steam temperatures around 600°C. The longest creep test for HR3C, conducted at 700°C and 69 MPa for 88,362 hours, confirmed its high and stable creep strengths and microstructural integrity across the 600-800°C temperature range. These innovative steel tubes have been successfully installed in the Eddystone No. 3 USC power plant as superheater and reheater tubes since 1991, with subsequent microstructural investigations after long-term service exposure revealing their remarkable performance. The paper provides an up-to-date analysis of the long-term creep rupture properties and microstructural changes of these steels following extended creep rupture and aging processes, highlighting their successful application as standard materials for superheater and reheater tubes in newly constructed ultra-supercritical boilers worldwide.

This content is only available as a PDF.