Abstract
The effect of a reduced-temperature austenization treatment on the microstructure and strength of two ferritic-martensitic steels was studied. Prototypic 9% and 12% Cr steels, modified 9Cr-1Mo (ASME T/P91) and Type 422 stainless (12Cr-1Mo-W-V), respectively, were austenized at the standard 1050°C and an off-normal 925°C, both followed by tempering at 760°C. The reduced austenization temperature was intended to simulate potential inadequate austenization during field construction of large structures. The microstructure, tensile behavior, and creep strength were characterized for both steels treated at each condition. While little change in microstructure was observed for the modified 9Cr-1Mo steel, the creep strength was reduced at higher temperatures and in long duration tests. The microstructure of the Type 422 stainless in the off-normal condition consisted of polygonized ferrite instead of tempered martensite. In this case the creep strength was reduced for short duration tests (less than ~1000 hr), but not for long duration tests. Slight reductions in tensile strength were observed at room temperature and elevated temperatures of 450,550, and 650°C.