Creep deformation behavior of the T122 type steels with different matrix phases such as α’ (martensite) and α’+δ (martensite and delta-ferrite) at different stress levels has been studied comparing with those of the model steels with the initial microstructures consisting of the various combination of matrices such as ferrite (α), martensite (α’) and austenite (γ), and precipitates such as MX and M23C6. The heterogeneous creep deformation is found to be pronounced at lower stress level in the steel with a dual phase matrix of α’+δ, resulting in a complex sigmoidal nature in the creep rupture life. The creep deformation process of the steel with the dual phase matrix is similar to that of the model steel with the α phase matrix which exhibits a typical heterogeneous creep deformation and the early transition to the acceleration creep at a very small creep strain. Such a heterogeneous creep deformation is much pronounced along the interfaces between the soft δ ferrite and the hard martensite (α’) phases, and has a viscous nature in creep deformation which was first identified in P91 steel. It is concluded that the homogeneous microstructure is a key for achieving the long-term creep strength in the advanced ferritic steels at elevated temperatures over 600°C.

This content is only available as a PDF.