High precision stress relaxation tests (SRT) at temperatures between 550C and 700C were performed on serviced and reheat treated T91, 9%Cr steel. The service exposure was 116,000 hours at steam temperatures to 550C. Constant displacement rate (CDR) tests were also run at 600C on notched specimens for the two conditions. Specimens, heat treated after service, were stronger at the lower test temperatures in terms of both tensile strength and creep strength. This difference was reflected in the CDR results, which also suggested a lower fracture resistance in the heat treated condition. Thus, service exposure appears to have softened the alloy and enhanced its resistance to fracture, with no evidence of embrittling reactions. Based on the analysis of the SRT tests, projections were made of the times to 1% creep and the times to rupture as well as direct comparisons with minimum creep rate data'. When plotted on the basis of a Larson- Miller parameter (C=30), the calculated values compared well with actual long time rupture testing for exposed and re-heat treated specimens, and generally showed higher precision. The longest test time was about eighteen months for the stress rupture data compared with the use of one machine for a few weeks for the SRT data. The latter actually covered a far greater range of creep rates and projected lives. The SRT test is especially consistent at higher parameter values, i.e., higher temperatures and/or lower stresses. This method of accelerated testing is now being applied to a wide range of alloys for fossil power plants for composition and process optimization, design analysis, and life assessment.

This content is only available as a PDF.