Abstract
New Monte Carlo models have recently been developed to predict microstructural evolution in steels and aluminum alloys during heat treatment and high-temperature service. These models can control precipitate type and size distribution, distinguishing between pure lattice and grain boundaries. Consequently, they can forecast the precipitate size distribution within grains and on grain boundaries as a function of time. This paper describes the model validation for ferritic Fe-9Cr P92 steels. The model provides new information over a range of time intervals adding up to the total plant lifetime in an ultra-supercritical plant. This information can be incorporated into continuum damage mechanics models for predicting creep rate and stress rupture life. The paper discusses how this technique is used as a materials development tool to forecast necessary compositional modifications for improving creep properties in ferritic steels.